Abstract :
 

This work studies the influence of the properties of nanocrystalline -titanium dioxide (nc TiO2) films on the performance of solar cells based on the Organic materials/ncTiO2 multilayer structure. That was investigated using X-ray diffraction, Atomic force microscopy (AFM), and Source-Measure Unit(SMU) under different ambient conditions. The device produced from batch A exhibit better performance compared to the device produced from batch B. The short circuit current, Jsc, increases from 0.03 mA/cm2 to 0.22 mA/cm2 , and the power conversion efficiency, η, from 0.01% to 0.09% in comparison between batches A and B solar cells. That is attributed to the grains of batch A nc-TiO2 having a size of 25 nm and a height of 100 nm, while particles of batch B nc-TiO2 film have a height of 40 nm and a size of 19 nm. These features cause to increase in the resistance and defects throughout the bulk region and interfaces of Batch B solar cells and impact the mechanism processes of charge generation of solar cells.