1. Article title:
Phytochemical Analysis and Profiling of Antitumor Compounds of Leaves and Stems of Calystegia silvatica (Kit.) Griseb.
2. Article author or authors
Ahmed MM Youssef, Doaa AM Maaty, Yousef M Al-Saraireh
3. Name of journal and date of publication
Molecules (2023/1/7)
4. Article abstract
Anti-tumor compounds from natural products are being investigated as possible alternatives for cancer chemotherapeutics that have serious adverse effects and tumor resistance. Calystegia silvatica was collected from the north coast of Egypt and extracted via methanol and n-hexane sub-fraction. The biologically active compounds of Calystegia silvatica were identified from the methanol and n-hexane extracts from the leaves and stems of the plant using GC-MS and HPLC. The antitumor properties of both parts of the plant were investigated against cancer and non-cancer cell lines using the MTT assay, and the IC50 in comparison to doxorubicin was calculated. The main compounds identified in the methanol extract were cis-vaccenic acid and trans-13-octadecenoic acid in the leaves and stems, respectively, and phenyl undecane and 3,7,11,15 tetramethyl-2-hexadeca-1-ol in the n-hexane extracts of the leaves and stems, respectively. Both parts of the plant contained fatty acids that have potential antitumor properties. The methanol extract from the stems of C. silvatica showed antitumor properties against HeLa, with an IC50 of 114 ± 5 μg/mL, PC3 with an IC50 of 137 ± 18 μg/mL and MCF7 with an IC50 of 172 ± 15 μg/mL, which were greater than Caco2, which had an IC50 of 353 ± 19 μg/mL, and HepG2, which had an IC50 of 236 ± 17 μg/mL. However, the leaf extract showed weak antitumor properties against all of the studied cancer cell lines (HeLa with an IC50 of 208 ± 13 μg/mL, PC3 with an IC50 of 336 ± 57 μg/mL, MCF7 with an IC50 of 324 ± 17 μg/mL, Caco2 with an IC50 of 682 ± 55 μg/mL and HepG2 with an IC50 of 593 ± 22 μg/mL). Neither part of the plant extract showed any cytotoxicity to the normal cells (WI38). Therefore, C. silvatica stems may potentially be used for the treatment of cervical, prostate and breast cancer.