Abstract :

This study helps to make the sustainability of the experiential system reg of solar generator device better, particularly the unexpected inactiveness of drainage liquid throughout the solar system which is generating power. Stagnation situations can be disastrous for solar system units. Various methods to mitigating the consequences of the stagnation state have been established and tested. Some suggested approaches are not appropriate for all device designs and implementations. The tested reg generator systems in experiments can continue to work although the collector of the piping system is cut off. furthermore, the absorber layer is a challenge because it absorbs general solar incandesce regardless of cell temperature, causing the piping system to become inactive. This research depicts the experiential data that was tracked and mentioned in dealing with stagnation. The hydrodynamic flowing in the experiential solar generator was simulated using rigid flow. The measuring and processing of the data allowed the identification of excessive heat and stagnation issues in real-world operating environments. Daily, the test logging data of the prototype reg device was monitored to guide the incipience of inactivity and excessive heat. Most items have been utilized in the study; solenoid check valve and the Reflux Pipe in the Check Valves have been utilized as primary control items within the experimental reg unit, while normal cooling was utilized as the subaltern control element. Under stagnation phases, an air path is installed at the rear of the absorber to cool it normally. In general, there are agreement between the experimental and simulation results.

 

International Journal of Heat and Technology

 

http://iieta.org/journals/ijht

 

https://www.scopus.com/sourceid/87828

 

https://mjl.clarivate.com/journal-profile

 

https://www.iieta.org/journals/ijht/paper/10.18280/ijht.390330

DOI: 

 

https://doi.org/10.18280/ijht.390330

 

index in Clarative, Scopus