This research presents new insights into the utilisation of waste glass powder in concrete pavements. Two different types of glass powder were used as a partial replacement for sand: 10% neat glass powder (untreated) and 10% silane-treated glass powder. The interfacial bonding properties, physical properties, and mechanical properties of concrete pavement were assessed at 7 and 28 days. Results exposed a reduction of 5% and 2% in the compressive and flexural strengths, respectively, and an increase of 15% in water absorption after the addition of neat glass powder to concrete after 7 days of curing. This is due to weak interfacial bonding between the glass powder and cementitious matrix. However, the incorporation of silane-coated glass powder led to an increase in the compressive and flexural strengths by more than 22% and 28%, respectively, and reduced the water absorption of concrete by 8%, due to the coupling functionality of silane. After 28 days of curing, the compressive strength of concrete increased by 15% and 22% after the addition of neat glass powder and silane-treated glass powder, respectively. In addition, water absorption dropped by 5% and 7% after the incorporation of neat glass powder and silane-treated glass powder.
Sustainable valorisation of silane-treated waste glass powder in concrete pavement
- Details
- Written by Mazen J Al-Kheetan, Juliana Byzyka, Seyed Hamidreza Ghaffar
- Category: Civil and Environment Engineering
- Hits: 99
Abstract :