Thermal Equilibrium of a Hydraulic Driving System

Tarawneh S. Muafag; ., Faisal M. M. Al-Gathian



To put into evidence the consequence of the energetic losses that appears in a hydraulic driving systems and to evaluate how does the system performance and reliability are strongly affected by the temperature increase due-to the flowing fluid, in this study a thermal analysis is presented for improving the possibility of developing a practical and simplified method for establishing the optimum working temperature at any instant time. Focus is on computational methods that to be used for controlling the working temperature around the limit of admissible temperature, if the working temperature exceeds this limit, the fluid properties alteration will occur rapidly and a slow deterioration in the internal working parts of the system is expected, based on the failure rule rate that doubles for every 10C of a temperature increase. Heat load duration is evaluated for both short and long operation periods, in which thermal equations are introduced to describe the conduction, convection and radiation modes of the heat transfer for the given mode of operation .The main conclusion of this study draws an important attention, that must be taken into account even during the first stages of designing such systems, in order to establish the optimum dimensions for the heat exchanger solution, as a design option when required for reducing the heat load for satisfying the needed working temperature and then keeping the system within the energy balance condition


Journal of Applied Sciences, vol. 4, issue 1, pp. 78-82